

경상북도의회 의원연구단체 (산림정책연구회 세미나)

소나무재선충병의 효율적 방제방안

2015. 4. 13.

대구한의대학교 임원현 교수

목 차

- │. 서론
 - 1. 연구의 배경
 - 2. 연구의 경과
 - 3. 심각성
 - Ⅱ. 피해현황
 - 1. 재선충병이란?
 - 2. 재선충병이 나무를 죽게하는 과정
 - 3. 재선충병에 걸린 나무식별법
 - 4. 병원체와 매개충의 공생관계
 - 5. 국내의 피해확산 현황
 - 6. 일본의 피해확산 현황
 - Ⅲ. 감염 및 발병 메카니즘
 - 1. 재선충의 존재규명
 - 2. 감염경로
 - 3. 발병메카니즘
 - Ⅲ. 방제대책
 - 1. 방제계획 수립
 - 2. 일반송림 방제의 유의점
 - 3. 중요송림 방제의 유의점
 - 4. 장단기 전망 및 대책

│. 서론

* 연구 배경

- ▶ 최근 재선충병 피해 극심, 전국적 확산 우려
- ▶ 금년, 내년 춘•하계 방제가 성패의 분수령
- ▶ 방제 관계자 전문성제고 및 시민홍보 필요성 증대

◈ 연구 경과

자료제공 : 후타이(二井) 교토대학 명예교수 나카무라(中村) 森林總研 방제팀장 경주대학교 조용기 교수

- > 2014. 12. 일본전문가 <u>강연/현장자문</u> 진행, 통역 (경북도)
- ➤ 2015. 1. KBS-1 <u>교토취재</u> 기획/안내 1.25(일) 취재파일 방영
- ▶ 2015. 1. 교토부 현황 및 방제시책 조사 (산림기술사2 동행)
- ▶ 2015. 3. 동북지역(최전방어선) 방제전략 조사 (경북 공무원)
 - ▶ 기타 연구논문 및 교토부 등 3, 4개 현 <u>시책자료 분석</u>₃

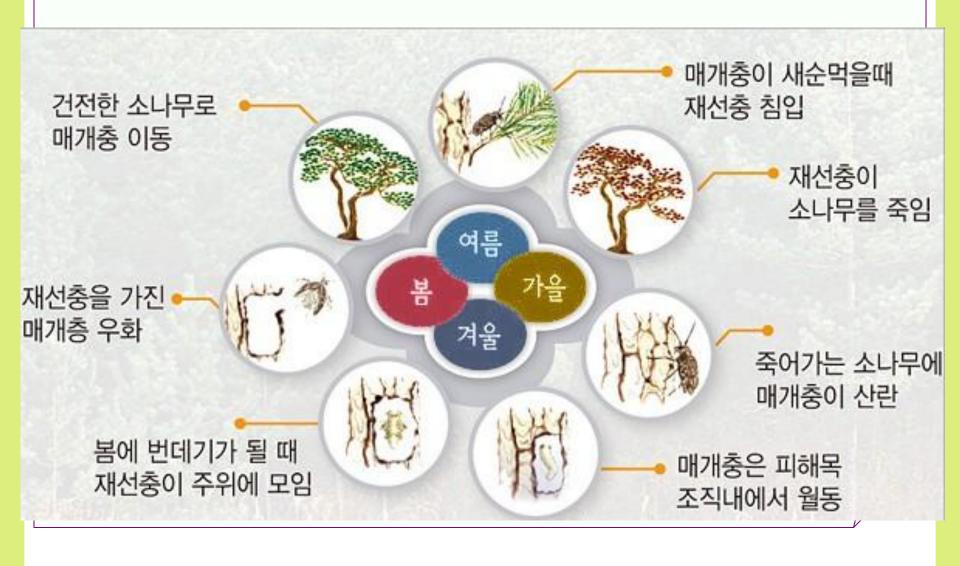
│. 서론

* 심각정

- ▶ 소나무 경관/문화 소멸
- ▶ 土石 유출, 산사태 등
- > 山江海 생태계 파괴

1. 재선충병이란? Pine wilt disease

(나무 병해충 도감, 2014.4.15, 자연과생태)


병원체: Bursaphelenchus xylophilus

피해 특징: 소나무재선충을 보유한 매개충인 <u>솔수염하늘소</u>가 신초를 후식할 때 소나무재선충이 나무 조직 내부로 침입, 빠르게 증식해 뿌리로부터 올라오는 수분과 양분의 이동을 방해하며 나무를 시들어 말라 죽게 한다.

병징 및 표징: 잎이 우산살 모양으로 아래로 처지며 빠르면 1개월 만에 잎 전체가 적갈색으로 변하면서 말라 죽는다. 가지나 줄기에서 매개충의 타원형 침입공과 지름 5~8mm의 원형 탈출공이 발견된다.

방제 방법: 고사목은 베어서 훈증 소각하고, 매개충구제를 위해 5~8월에 아세타미프리드 액제를 3회 이상 살포한다. 예방을 위해서는 12~2월에 아바멕틴 유제 또는 에마멕틴벤조에이트 유제를 나무주사하거나 4~5월에 포스티아제이트 액제를 토양관주한다

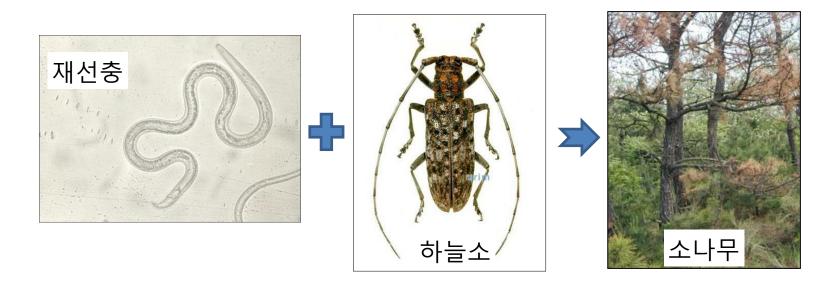
2. 재선충병이 나무를 죽게 하는 과정

3. 재선충병에 걸린 소나무 잣나무 식별법

아무런 이유 없이 고사 잎이 우산살 모양으로 처지면서 고사

明特的多个的社会人,当出行的社会人

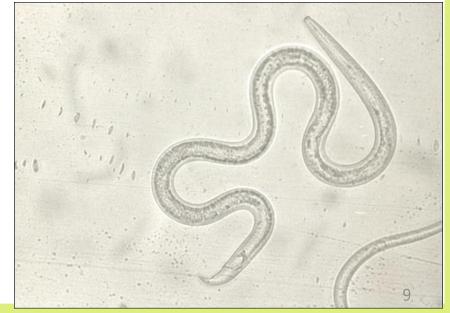
선충은 이들 매개충의 몸 안에서 기생하다가 매개충이 새순을 갉아 먹을 때 나무의 상처부위를 통해 침입



4. 병원체 매개충 공생관계

- 1) 병원충(가해자): 재선충
- 2) 매개충(운반책): 솔수염하늘소, 북방
- 3) 공생관계 : 가해자와 운반책

1) 병원충 : 재선충(Bursaphelenchus xylophilus)


➤ 역할: 소나무고사 직접가해자, 최장 1mm 정도

▶ 번식 : 소나무 체내, 알-성충(3일), 암수 1쌍-20만(20일)

▶ 먹이 : 소나무 유세포, 곰팡이류(청변균-하늘소유충)

▶ 유입경로 : 북미 → 일본 → 한국 (소나무목재)

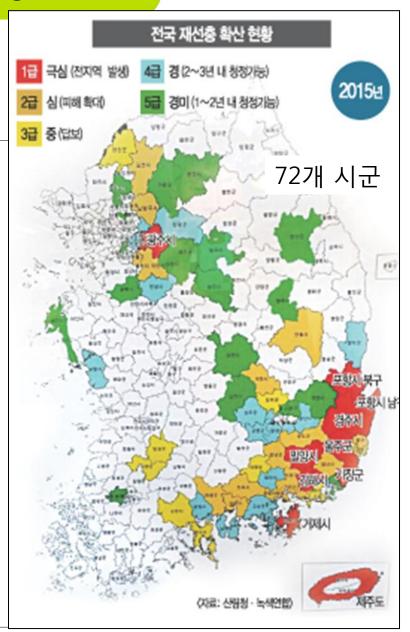
2) 매개충: 솔수염하늘소, 북방하늘소

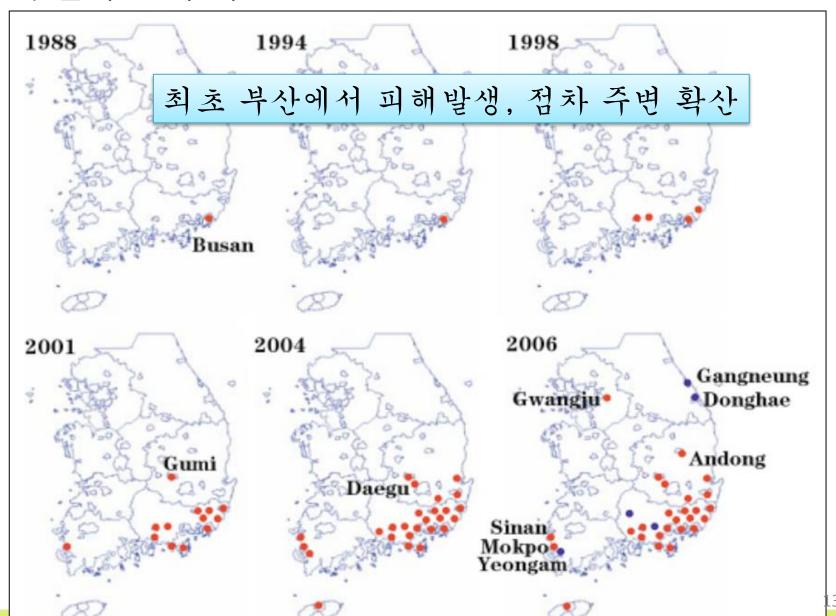
➤ 역할: 재선충 운반책, 성충 최장 3cm 정도

▶ 먹이 : 소나무의 부드러운 가지

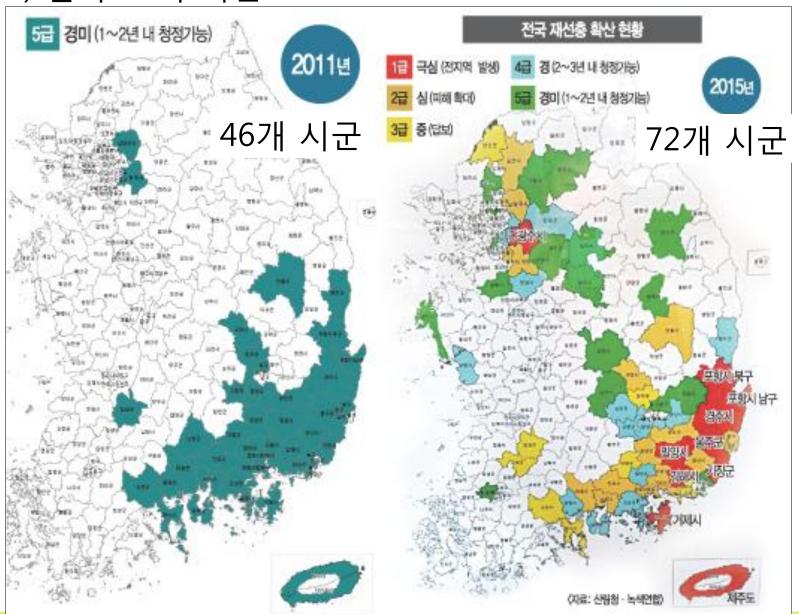
▶ 번식 : 교미(소나무 위), 산란(쇠약/고사 소나무)

- 3) 공생관계: 연합군 과거 송충이, 솔잎혹파리 대비 매우 강력
 - ▶ 가해력(병원충): 재선충, 자력이동 불가능
 - ▶ 이동력(매개충): 솔수염하늘소




- ❖ 무임탑승 ?? 공생
- 솔수염하늘소 산란: 쇠약/고사 소나무가 필요 건강 소나무: 송진, 생육 불가
- ➤ 재선충을 소나무에 내림 쇠약/고사 산란

5. 피애왁산 연왕(안국)


- 1) 한국
 - 1차 확산: 1988~2006년
 - 2차 확산: 2011~2014년
 - ▷ 경주지역 : 2005년 양남 현재, 불국사/양동마을 근접
- 2) 일본: 1905~2014년
 - 피해목 발생량 추이
 - 송림쇠퇴 사례(京都, 東山)

1) 한국 : 1차 확산

1) 한국 : 2차 확산

❖ 경북도 피해현황

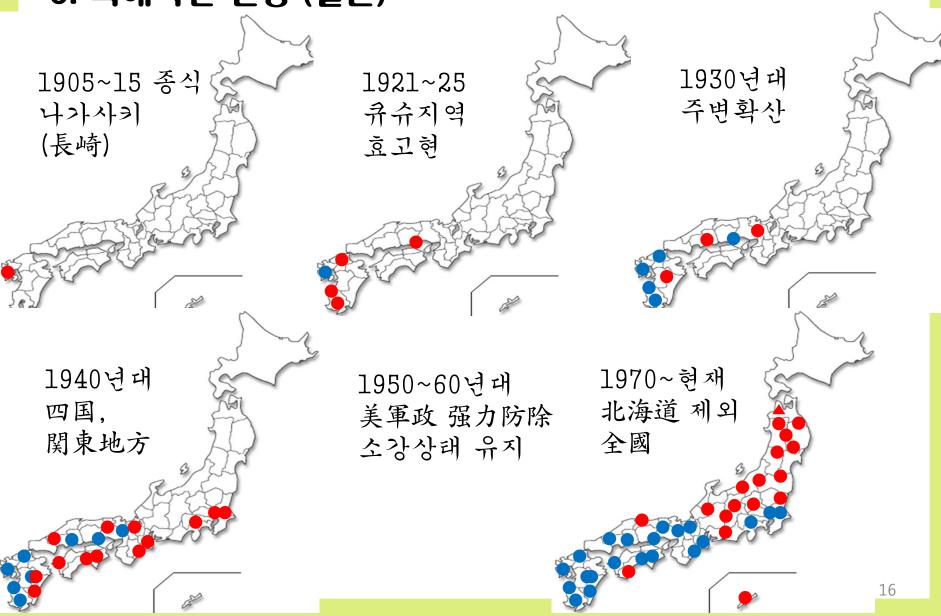
▶ 최초 : 구미, 2001년

➤ 현황: 14개 시군, 극심: 포항·<u>경주</u>·안동·구미

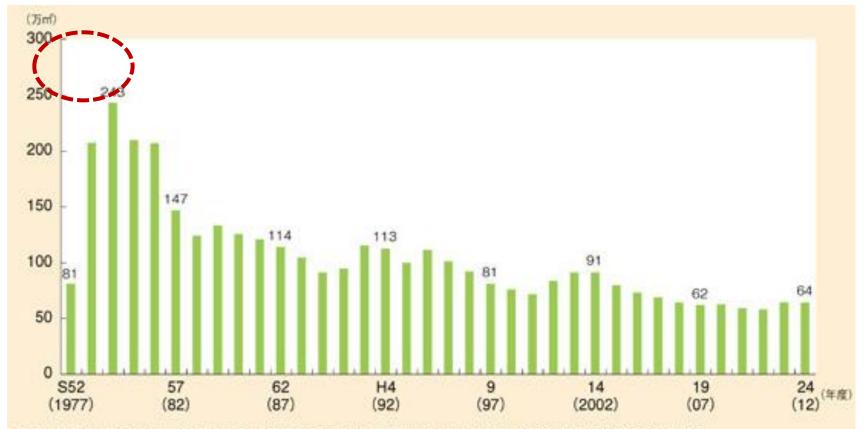
278,000본 (포항 18만, <u>경주 7만</u>)

❖ 경주지역 피해확산

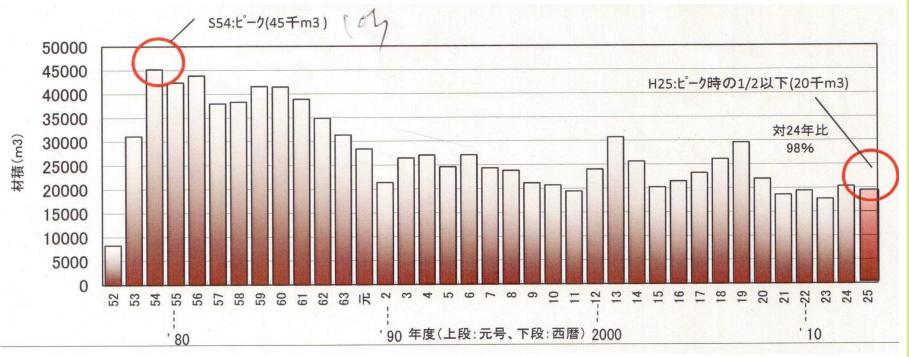
➤ 2005년 : 양남 첫 발생, 반경 3km 벌채 🗒


➤ 2012년 : 불국사 3km 지역

➤ 2014년 : <u>불국사</u> 150m 지역

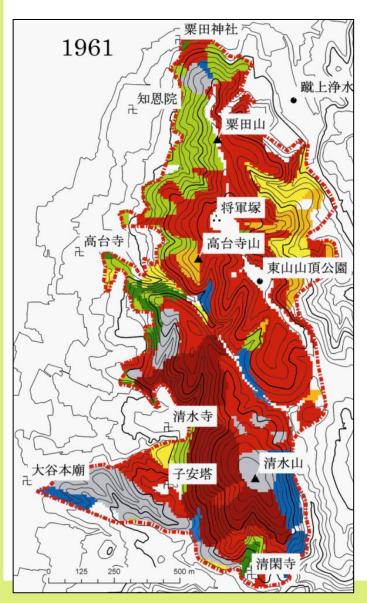

<u>양동마을</u> 주변 숲

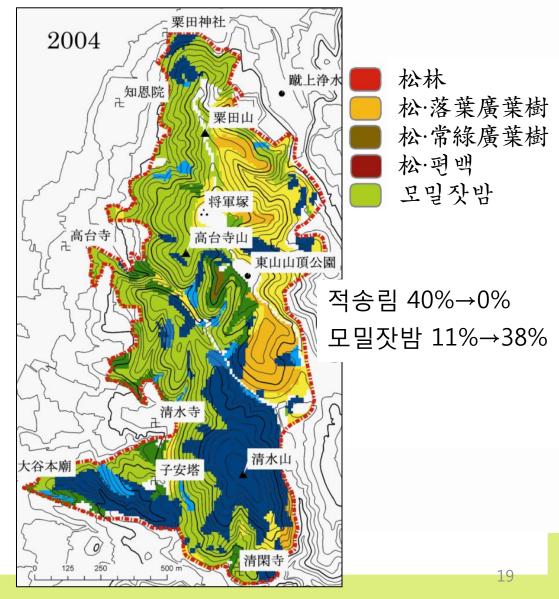
6. 피애왁산 연왕 (일본)


❖ 피해목 발생량 추이 (일본)

資料: 林野庁プレスリリース「「平成24年度森林病害虫被害量」について」(平成25(2013)年8月27日付け)

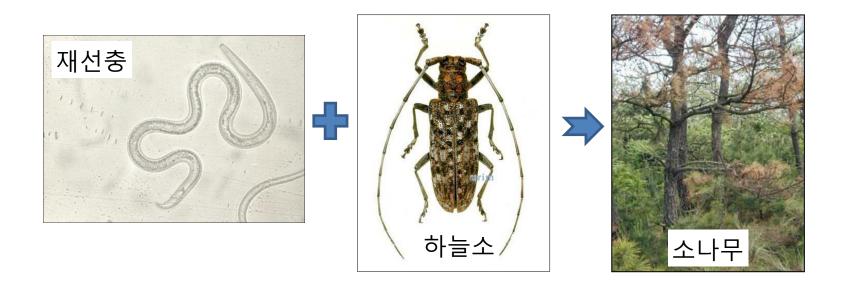
피해량은 1980년에 절정, 연간피해량: 200만m³/년 이상 그 후, 피해량은 감소하였지만 현재도 50만m³ 이상의 피해가 계속되고 있다. (재적 1m³ = 약 5주, B20cm * H12m)

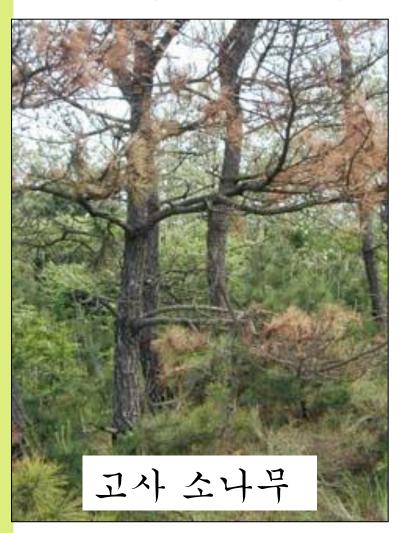

❖ 피해목 발생량 추이 (일본 교토부)



피해량는 1979年에 절정, 연간피해량: 4.5万㎡/년 이상 그 후, 피해량은 감소하였지만 현재도 2만㎡ 이상의 피해가 계속되고 있다. (재적 1㎡ = 약 5주, B20cm*H12m)

❖ 京都 東山의 松林衰退


(京都府立大学·奥田, 高原)


Ⅲ. 감염 및 발병메카니즘

- 1. 재선충의 존재 규명
- 2. 감염경로 (재선충 하늘소 소나무)
- 3. 발병 메커니즘 (재선충 소나무)

1. 재선충의 존재 규명

발병 1905년, 존재규명 1970년대

고사 소나무의 수피를 벗기면 穿孔性甲虫類의 먹이 찌꺼기가 보인다.

1. 재선충의 존재 규명

樹皮 아래에는 많은 穿孔性甲虫類의 幼虫도 보인다.

때문에 소나무材線虫이 発見되기 前에는 穿孔性甲虫類가 소나무고사병의 原因이라고 여김

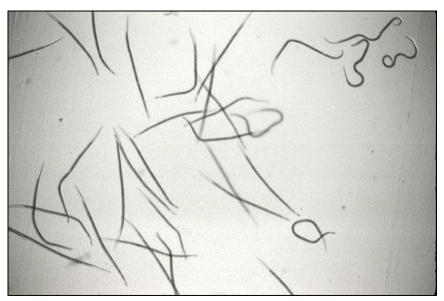
1. 재선충의 존재 규명

❖집중연구

1960년대 피해극심, 연구역량

솔수염하늘소가 健全木에 産卵하면 樹脂 때문에 卵은 죽음

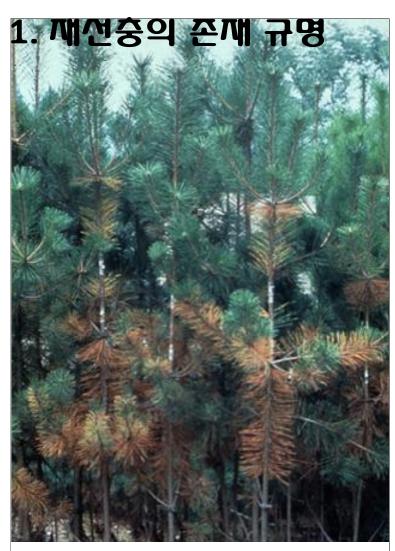
하늘소 二次性害虫 (1966,7)



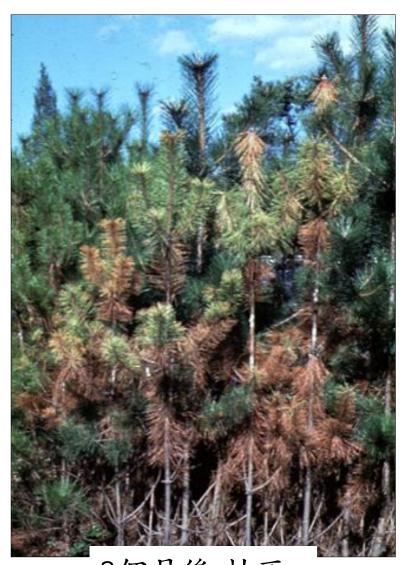
하늘소에 의한 소나무類의 枯損防止에 関 研究 (=樹病, 菌学, 樹木生理. 土壤学, 気象学, 木材化学) (1968 - 1972)

病原線虫 의 発見

1. 재선충의 존재 규명



病原体 線虫. 그 病原性은 면밀한 <u>接種試験</u>에 의해 규명되었다.

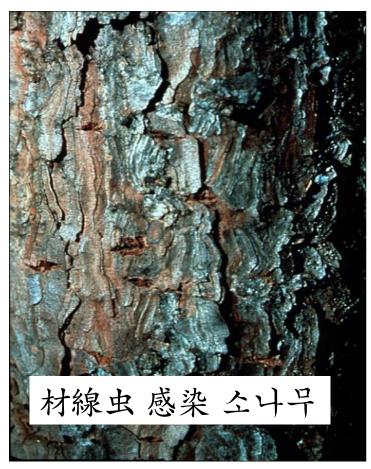

- 1. 剝皮
- 2. 脱脂綿固定
- 3. 線虫懸濁液 注入
- 4. 방수필름 被覆

<線虫 懸濁液 接種試験>

接種 1個月後 初期 枯死症状 나타남

2個月後 枯死

2. 감염경로(깨선충 - 하늘소 - 소나무)



枯死木 속에서 成虫이 된 <u>하늘소</u>. 健全한 소나무가지 樹皮 摂食.

> 線虫은 이 傷口를 통하여 소나무 体内에 侵入

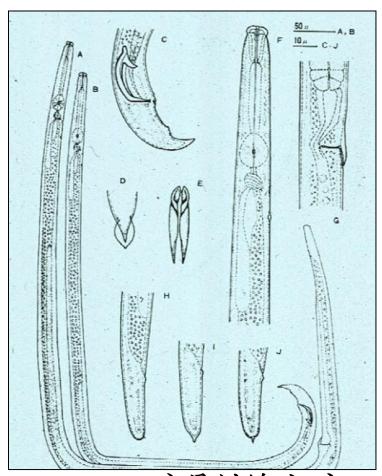
2. 감염경로(깨선충 - 아늘소 - 소나무)

樹脂分泌 停止 揮発性가스(에타놀) 発散 察知한 하늘소 飛来, 産卵

2. 감염경로(깨선충 - 아늘소 - 소나무)

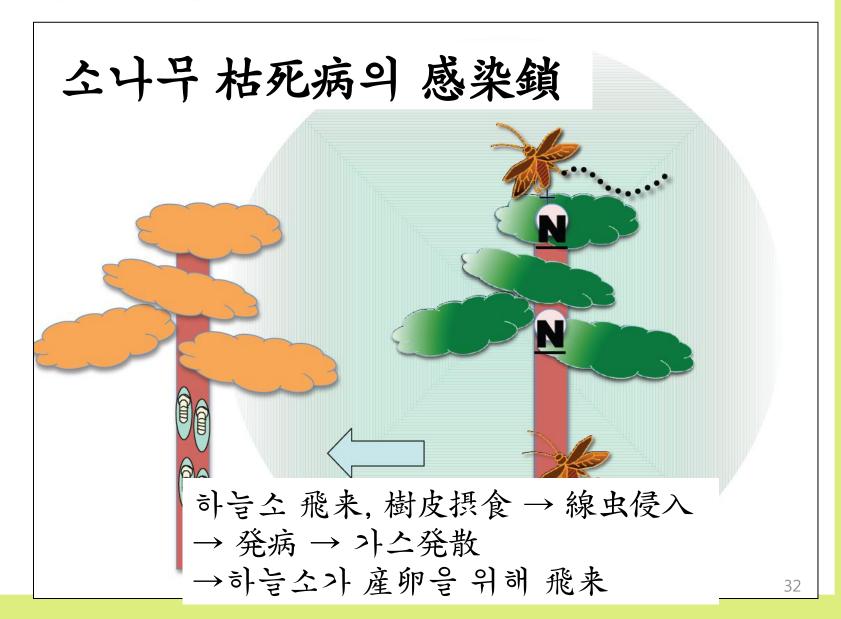
5~7日後, 孵化한 幼虫. 樹皮下 柔組織을 먹으며 成長

數回 脱皮, 자란 幼虫은 材中에 터널을 파며 前進


2. 감염경로(깨선충 - 아늘소 - 소나무)

가을철 気温이 低下하면, 터널을 上向으로 파고 先端에 번데기방을 만들어 그 안에서越冬. 방 周辺이 青黑色. 곰팡이의 一種인 青変菌. 材線虫의 好適한 먹이.

2. 감염경로(깨선충 - 하늘소 - 소나무)

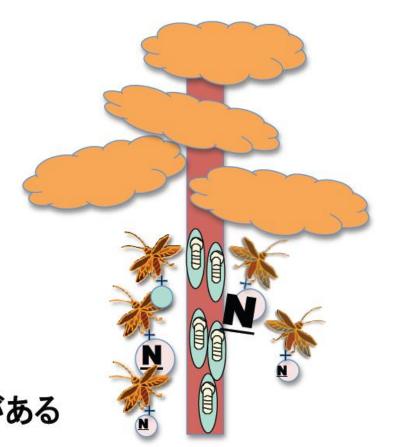

소나무材線虫이 <u>菌糸 細胞</u>에 針을찔러 内容物을 <u>吸収</u>하는 모습

번데기방 周圍에 多数의 材線虫이 하늘소의 羽化를 기다림. 이때 <u>곰팡이의 양호 정도에 따라 羽化脱出하는 하늘소에</u> 편승하는 線虫의 数가 결정된다.

2. 감염경로(깨선충 - 하늘소 - 소나무)

2. 감염경로(깨선충 - 아늘소 - 소나무)

하늘소 우화탈출. <u>보유한 선충의 수</u>에 의해 말라죽는 소나무의 수가 영향을 받게 된다.

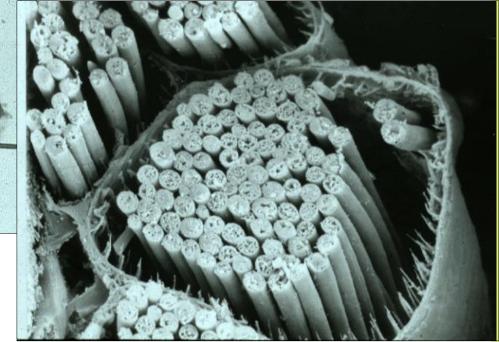

マツは枯れない

少数のマツが枯れる

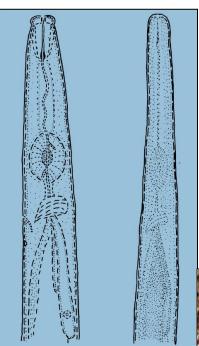
多数のマツが枯れる可能性がある

2. 감염경로(깨선충 - 아늘소 - 소나무)

하늘소 번데기 (5월~6월)


우화 하늘소. 1주 정도 번데기방 채재. 번데기방 주위에 모여 있던 재선충이 하늘소의 몸으로..

2. 감염경로(째선충 - 하늘소 - 소나무)



하늘소의 気管系. 숨구멍 - 체내 깊은 곳 材線虫, <u>気管系 内部 탑승</u> 気管系를 꽉 채운 材線虫. 최대 20만 마리 500마리-소나무 1주 枯死 400주 枯死시킬 可能性..

2. 감염경로(깨선충 - 아늘소 - 소나무)

身体가 충분히 단단해 진 成虫은 材線虫을 태워 枯死木에서 나옴.

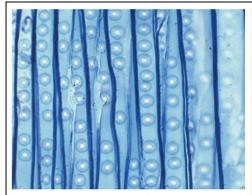
하늘소 体內의 材線虫. 消化器官을 退化시키고 있어 하늘소로부터 栄養을 섭취하지 못하고 단순한 乗客에 불과

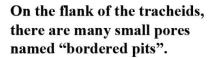
3. 발병 메커니쯤 (깨선충 – 소나무)

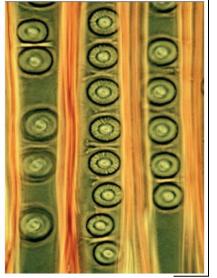
▶ 1905~1960년대 : <u>곤충</u>에 의한 식해로 고사함 (하늘소, 바구미, 좀벌레 등)

- ➤ 1970년대 초 : <u>재선충</u>의 존재 확인, 가해자로 규명됨
- ▶ 이후 재선충에 의한 발병메커니즘 학설
 - 재선충의 영양분 탈취 또는 독소, 스트레스 등에 의함
 - 재선충의 과다번식에 의한 물관 막힘 (최근까지 定說)

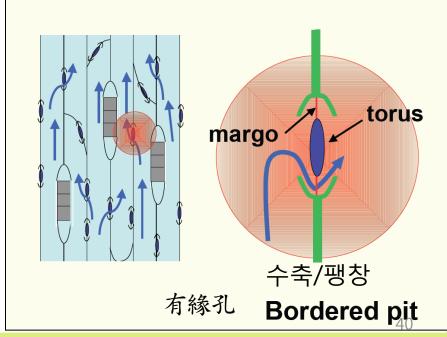
3. 발병 메커니쯤 (깨선충 - 소나무)

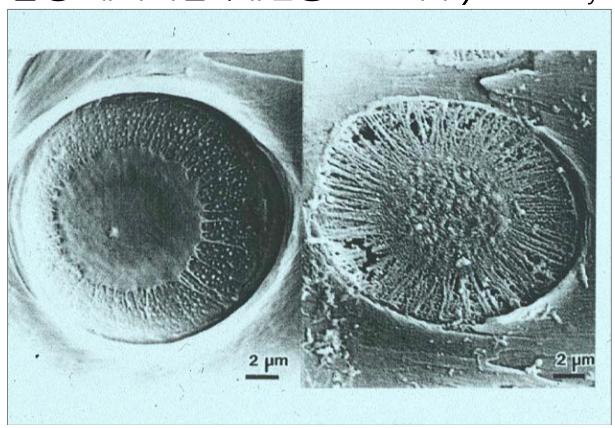

❖ 過敏感反應說


후타이(二井) 교토대학 교수, 1998년

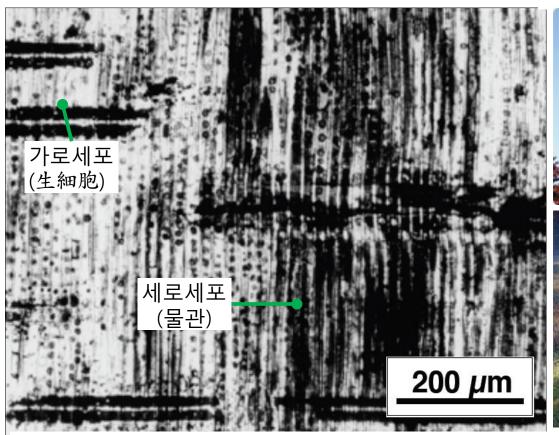

- ▶樹木의 防禦시스템
- <u>外敵</u>의 칩임(감염)에 대한 기본적 반응 박테리아, 곰팡이, 선충 등
- ▶ 初動反應: 감염 활성산소 대량방출 誘導抵抗시스템 가동
 (침입자를 그 자리에서 封殺하기 위함)
- ▶ 선충의 경우:移動이 빨라 封殺하지 못함. 연속적 활성산소 방출
- ▶ 세포막脂質 산화 : 액포 붕괴, 세포 괴사, 내용물 유출
- ▶ 물관필터(有緣壁孔) 막힘:萎凋, 枯死..... <u>최악의 시나리오</u>
- ▶참고
- ▶ 재선충이 북미대륙에서 넘어 온 것으로 규명됨
- 북미 소나무는 재선충병 발생이 극히 드뭄(면역, 둔감)
- ➢ <u>저항성소나무</u> 육종 (1985년~, 제2부 상세설명)

3. 발병 메커니쯤 (깨선충 – 오나무)


◆ 수분이동 (뿌리→선단부)



仮導管의 両端은 閉鎖. 側面 구멍으로 이웃 連絡 水分 위로 이동 연결 필터를 통하여 移動


3. 발병 메커니즘 (깨선충 - 소나무) Photo by Dr. T. Nobuchi

이 작은 구멍에는 필터와 비슷한 網이 있는데 正常 樹木에서는 左写真과 같이 <u>깨끗한 網目構造</u>. 그러나 感染된 樹木에서는 이 網目에 大量의 異常物質이 付着되어 水의 移動을 막게 된다

3. 발병 메커니쯤 (깨전충 - 소나무)

(Photo by N. Hara)

材線虫에 感染된 <u>放射柔細胞</u> 등의 生細胞가 즉게 되고, 그 <u>内容物</u>이 仮導管内에 流込, <u>網目構造</u>을 막게 됨

→ 수분이동 차단

- 1. 방제계획 수립 (<u>일반, 중요</u>)
- 2. 일반송림의 방제 유의점
- 3. 중요송림의 방제 유의점
- 4.장단기 전망 및 대책

1. 방제계획 수립 (중점, 일반)

- 1-1. <u>防除(豫防</u> 및 驅除)방법 개요
 - ▶ 예방 : 건전목 피해방지
 - 약제살포: 하늘소(성충) 살충, 5~7월, 2회
 - 약제수관주입: 재선충 감염 방지, 11~3월
 - 기타 : 천적, 유인제, 저항성소나무 육종, 수종갱신 등
 - ▶ 구제 : 피해목 처리
 - 방법: 피해목 벌채 후, 훈증, 파쇄, 소각, 약제처리 등
 - 목적 : 피해목에 내재한 하늘소(알~성충), 선충을 살충
 - 시기 : 피해목 발생(8월) ~ 하늘소성충 탈출(5월)

3회 정도: 11월, 1월, 3월

1. 방제계획 수립 (중점, 일반)

1-2. 방제지역 구분

1997년 「山林病蟲害等防除法」

➢ 중점방제지역 : <u>중요송림</u> 및 인접지역

경관, 문화, 생산, 방재 등

▶ 일반방제지역: 기타 지역(일본: 94% 정도)

1-3. 차등 방제

▶ 일반방제: 벌채처리, 필요시 약제살포 등

➤ 중점방제:약제살포,수관주입등 적극방제

예:불국사, 양동마을 송림

2. 일반송림 방제의 유의점

2-1. 예방: 건전목 감염 방지

2-2. 구제 : 고사목 벌도/처리

2-3. 潛在感染木 색출, 구제

2-4. 先端枯死木 색출, 구제

2. 일반송림 방제 유의점

2-1. 예방 : 건전목 감염 방지

❖ 매개충(솔수염하늘소)의 살충제 散布

- ❖ 無人헬기
- 환경오염 최소 : 적지, 적량 살포
- 기타 장점 : 조작 간단, 비용 저렴, 민원 감소 등
- 현황: 대형헬기-일반송림, 무인헬기-중요송림
- 회수 : 중요도에 따라 2~4회

2-1. 예방(선택) : 약제살포

2. 일반송림 방제 유의점

2-2. 구제 : 고사목 벌도/처리

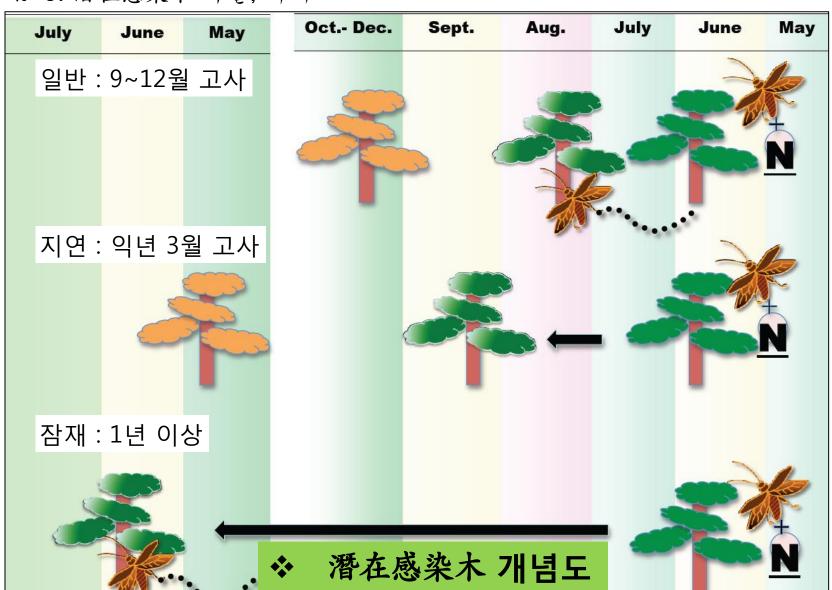
❖ 처리방법

2-2. 구제 : 피해목 벌채/처리

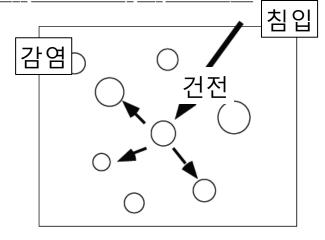
❖ 고사목 철저 구제

매우 중요

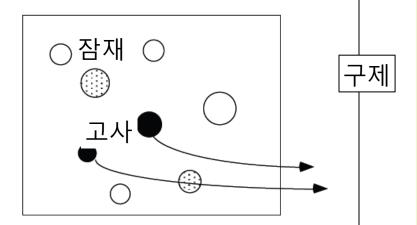
- ➢ 중요성 : <u>초기방제 실패의 큰 원인</u>
 - 현황 : 수간, 굵은 가지 위주 처리 (예산, 인력, 인식 부족)
 - 개선 : 선단부의 3cm정도 가지에도 상당수 하늘소 월동
 - 소홀히 하면, 월동 후 탈출 및 재차 산란

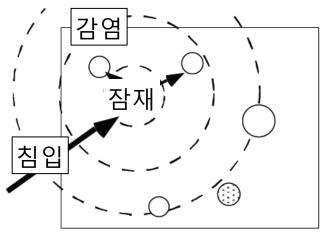


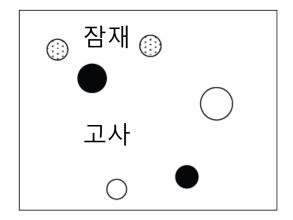
2. 일반송림 방제 유의점


- 2-3. 潛在感染木 색출, 구제
 - ➢ 중요성 : <u>초기방제 실패의 큰 원인</u>

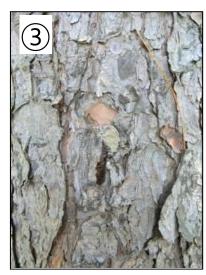
- 매우 중요
- 일반감염목 : 감염 후, 2개월 정도 고사(변색, 식별 용이)
- 잠재감염목 : 감염은 되었으나, 육안식별 불가능. 6개월~1년 후에 고사하는 경우도 허다함 (최장 10년)
- 고사목은 물론 <u>주변 소나무의 잠재감염여부 조사, 제거</u>
- 소홀히 하면, 다음해 그 자리에서 재차 발생
- ▶ 정밀조사 결과
 - 고사목 개체수의 상당수(50~220%) 잠재감염목 존재
 - 원인 : 침입/번식 선충수가 적거나, 저항성 소나무일 경우

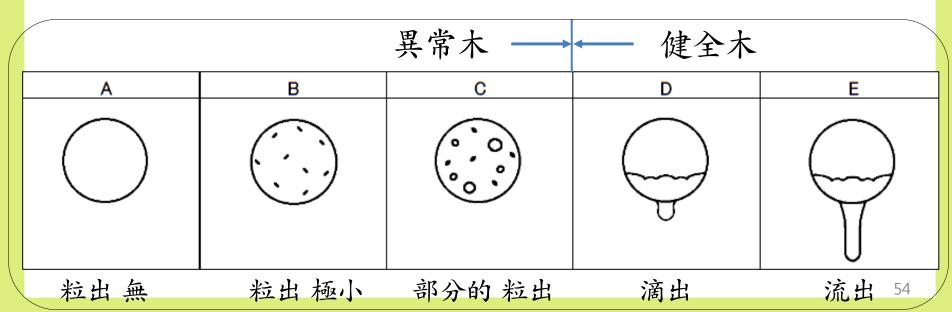

2-3. 潛在感染木 색출, 구제




_2. the autumn after i 거저 ion

3. the next summer


4. the next autumn


🌣 潛在感染木 (간단)식별방법

- ① 못, 드릴 穿孔 직경 5mm, 內材 도달
- ② 수시간 후, 松津 확인 (아래 그림)
- ③ 異常木:診断·伐倒 健全木:保護 措置

2-4. 先端枯死木 색출, 방제 항공사진, GIS연계 Pin-Point 방제

매우 중요

- ❖ 중요성
- ▶ 대규모 피해지 : 쉽게 육안식별 가능
- ▶ 선단고사목 : 다소 이격, 육안식별 곤란 주변감염, 피해확산원흉 → 적극 색출, 방제

- ➢ 적외선 항공사진
 - : 일반컬러사진보다 식별 용이
- ▶ 촬영시기 : 10월 중순~ 11월 상순
- ▶ 촬영축척 : 1/10,000 최적
- ➤ 고사목 색출 위치정보 GIS연계₅₅

GPS

연계

2-4. 先端枯死木 색출, 방제

❖ 사진판독 및 활용

▲ 항공사진 고사목 판독

- ❖ 활용방법
- ① 作業班 林內誘導 携帶型情報端末機에 의한 現地誘導시스템 開發
- ②無人望习誘導·空中散布 自律航行型無人望기에 의한 近接上空에서 핀포인트 散布

- ❖ 기대효과
- ▶ 枯死木索出의 效率化 ▶ 人力 最小化
- ▶ 單木單位 個別管理 ▶ 空中散布 最小化

3. 중요송림 방제의 유의점

- 3-1. 중요송림의 개념
- 3-2. 약제 산포 : 솔수염하늘소
- 3-3. 약제 수관주입: 재선충
- 3-4. 주변 수종갱신 : 방제대 설치

3. 중요송림 방제의 유의점

- 3-1. 중요송림의 개념
 - ❖ 인간 생활과 밀접한 관계를 지닌 송림
 - ▶ 역할 : 경관, 문화, 생산, 방재 등
 - ▶ 사례: 명승, 문화재, 송이산지, 해안방풍림

▲ 京都御所

▲ 松栮 생산

▲ 海松방풍림

3-1. 중요송림의 개념

❖ 명품소나무 피해 사례

> 명칭:萬休院 舞鶴松

▶ 지정: 국가 천연기념물,新日本名木 100선

▶ 수령: 450년, 수고 11 m 흉고직경 1.3 m

3. <u>중요</u>송림 방제의 유의점

3-2. 약제 산포

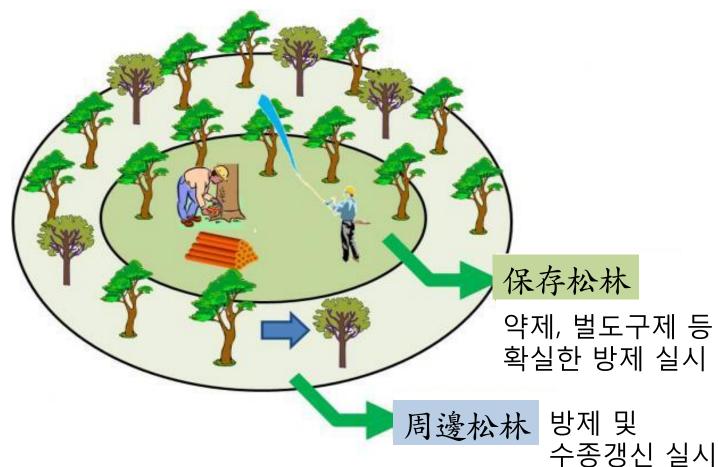
- ▶ 매개충(하늘소) 살충제 散布
- 일반송림 1~2회, 중요송림 2~4회
- ▶ 무인헬기 : 효율적(환경오염 최소화)
- ▶ 교토부 : 무인헬기 위탁방제

- ◀ 高所作業車
- ▼ 操作員

▼ 시속 15km, 표적 3m 상공

3. 중요송림 방제의 유의점

3-3. 약제 수관주입(樹幹注入) 효과 탁월


- ▶ 건전소나무에 침입하는 재선충 방제
- ▶ 최소 3개월 이전 주입(11월~3월)
- ▶ 소나무 체적에 따라 주입량 차등
- ▶ 흉고직경 30cm : 4~5개, 약 20만원

- 3. 중요송림 방제의 유의점
- 3-4. 주변 수종갱신 : 방제대 설치
 - ➤ 중요송림 주변 2~3km, 활엽수 등 갱신

10년 후

2~5년 후

4. 장단기 전망 및 대책

4-1. 장단기 전망 : 송림 쇠퇴

4-2. 단기 대책 : 예찰, 예산/인력 등

4-3. 장기 대책: 저항성소나무 육종 등

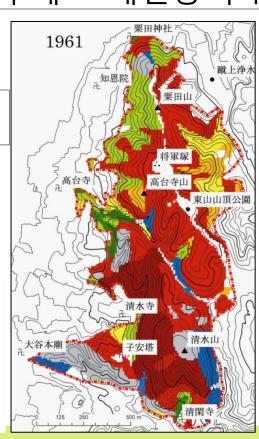
4-1. 장단기 전망

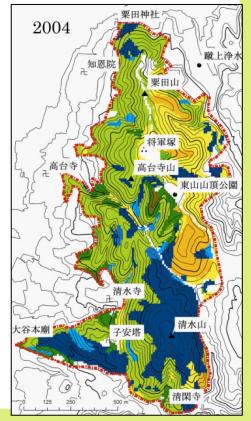
❖ 송림 의퇴

- ▶ 소나무 : 타 수종에 비해 척박한 토양에 안착, 번성
- ▶ 산림토양 부영양화 : 간벌지연, 낙엽축적 → 낙엽수 번성
- ▶ 송림쇠퇴 : 소나무 약화 추세 + 재선충피해 가세

❖ 京都, 東山

1961년 → 2004년 적송림 40% ?? 모밀잣밤 11% 38%


松林


松·落葉廣葉樹

松·常綠廣葉樹

📕 松·편백

모밀잣밤

❖ 일본의 송림쇠퇴 현황

- ▶ 일반 송림 : 소나무 잔존율 매우 낮음, 5% 내외
- ▶ 중요 송림 : 대발생 40년간 현재까지도 매년 고사목 발생

❖ 피해사례(중요송림)

明治天皇陵, 京都市 伏見区

- ▶ 40여 년간 정밀 방제
- ▶ 수백 그루의 조형소나무 중, 절반 정도 고사, 벌채
- ▶ 현재까지 <u>매년 고사목</u> 발생

4-2. 단기 대책: 예찰, 예산/인력 등

2015~2016년 <u>2년간 방제에 실패할 경우</u>,

전국적 확산 및 중요송림의 피해가 불가피할 것으로 보여짐

- ❖ 대책
- ➤ 중요도(41쪽 참조)에 따른 <u>차등 방제계획</u> 수립
- ▶ 고사목 및 잠재감염목(47쪽)의 정확한 집계로 예산 확보
- ▶ 선단고사목(51쪽) 색출 및 방제를 통한 피해확산 방지
- ▶ 현장 <u>방제작업종사자</u>의 심각성 인지, 철저한 방제작업(46쪽)

- 4-3. 장기 대책
- ❖ 저항성소나무 육종
 - ▶ 피해지 생존개체로부터 수차례 교잡 육성
 - ▶ 감염율이 낮은 소나무 (20%내외)
 - ▶ 재선충 도래지 북미의 소나무는 저항성이 매우 높음

▶ 필요성 (短期) 薬剤 防除

비용, 환경 부하 등


(長期)抵抗性

1976년 연구개시

▶ 현황 - 318 家系(적송 208. 흑송 110)

▶ 육종 단계

❖ 저항성소나무 육종

被害地 生存木 種子採取

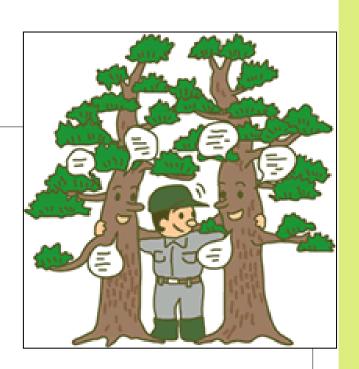
苗木養成, 線虫人工接種

抵抗性品種開發

抵抗性品種採種園造成

◀線虫接種

接種 8週▶



❖ 방제전문가 양성

일본:소나무보호사 松保護士

▶ 연혁

- 1977년 松食虫방제특별조치법 「松くい虫防除特別措置法」
- 1987년 松食虫피해대책특별조치법
- 1997년 삼림병충해 등 방제법

- 2004년 資格養成事業 개시 (재)일본녹화센터
- 2014년 4월 현재 418명(남 398, 여 20)

▶ 자격 취득 강습회 수료 - 심사

❖ 방제전문가 양성

講習会受講者 公募

松·松林 保護業務経歷 5年以上 樹木医, 樹木医補 등

講習会受講者 選抜

選抜試験,抽選,60名程度

講習会(4日間)

講義, 実習, 総合試験, 面接試験

合格者 決定

認定委員会 審査

5年, 更新講習

登録者名簿 作成

林野庁森林管理局,都道府県林務担当課,都道府県緑化센터,関係団体 등에 提出/活用

▶ 강습회 내용

- ❖ 방제전문가 양성
- 소나무材線虫病, 소나무枯死病 전반
- 소나무의 歷史, 文化, 生理·生態, 役割 등
- ▶ 활동
 - 被害現場의 防除対策 수립, 作業指導活動
 - 소나무枯死病의 深刻性, 防除対策 啓発活動
 - ▼ 예방 토양관주

▼ 벌채목 훈증

▼ 저항성묘목 식재

❖ 시민운동 전개-전국

松原再生運動

▶ 주관: (財)日本緑化센터, 2006년부터 5~7개소/년

▶ 취지:人間과 松原의 関係 再生

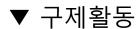
松原 보전, 복원 → 環境・観光・健康資源 가치 회복

▶ 사업: 松原 보전에 관한 전국적 활동, 중요성 홍보, 지원,

抵抗性 소나무 공급지원, 송림보전 기술개발 등

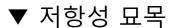
❖ 시민운동 전개 - 지역사례

▶ 아키타현(秋田県): 재선충병 1982년~, 최북단 방어선


<u> 송림보전 • 재생 시민봉사대 : 80여 단체</u>

- 단체명: 99島의 소나무를 지키는 모임 九十九島の松をまもる会 [象潟町]

- 회원:일반회원 361명、찬조회원 54단체


- 회비:1,000円 이상 설립:1999년 9월 『2002년도 방제활동』林野庁장관상

▼ 예찰활동

❖ 知彼知己

과거 송충이, 솔잎혹파리 대비 매우 강력

- ▶ 리(인간) 도의회 차원 소나무에 대한 애착 多大 심각성 인지, 전문성, 예산 등등...조례제정

❖ 제언 - 도의회가 선봉

- ▶ 장단기 대책수립: 초기방제, 장기전 대비, 중요송림
- ▶ 전문성 제고 : 잠재감염목, 선단고사목, 방제기술 등
- ▶ 국민적 관심 : 심각성 인지, 예산/인력, 적극 동참